This is documentation for an old release of SciPy (version 0.17.0). Search for this page in the documentation of the latest stable release (version 1.15.1).
scipy.sparse.linalg¶
Sparse linear algebra (scipy.sparse.linalg)¶
Abstract linear operators¶
LinearOperator(dtype, shape) | Common interface for performing matrix vector products Many iterative methods (e.g. |
aslinearoperator(A) | Return A as a LinearOperator. |
Matrix Operations¶
inv(A) | Compute the inverse of a sparse matrix :Parameters: A : (M,M) ndarray or sparse matrix square matrix to be inverted :Returns: Ainv : (M,M) ndarray or sparse matrix inverse of A .. |
expm(A) | Compute the matrix exponential using Pade approximation. |
expm_multiply(A, B[, start, stop, num, endpoint]) | Compute the action of the matrix exponential of A on B. |
Matrix norms¶
norm(x[, ord, axis]) | Norm of a sparse matrix This function is able to return one of seven different matrix norms, depending on the value of the ord parameter. |
onenormest(A[, t, itmax, compute_v, compute_w]) | Compute a lower bound of the 1-norm of a sparse matrix. |
Solving linear problems¶
Direct methods for linear equation systems:
spsolve(A, b[, permc_spec, use_umfpack]) | Solve the sparse linear system Ax=b, where b may be a vector or a matrix. |
factorized(A) | Return a fuction for solving a sparse linear system, with A pre-factorized. |
MatrixRankWarning | |
use_solver(**kwargs) | Select default sparse direct solver to be used. |
Iterative methods for linear equation systems:
bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) | Use BIConjugate Gradient iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real or complex N-by-N matrix of the linear system It is required that the linear operator can produce Ax and A^T x. |
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) | Use BIConjugate Gradient STABilized iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real or complex N-by-N matrix of the linear system A must represent a hermitian, positive definite matrix b : {array, matrix} Right hand side of the linear system. |
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) | Use Conjugate Gradient iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real or complex N-by-N matrix of the linear system A must represent a hermitian, positive definite matrix b : {array, matrix} Right hand side of the linear system. |
cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) | Use Conjugate Gradient Squared iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real-valued N-by-N matrix of the linear system b : {array, matrix} Right hand side of the linear system. |
gmres(A, b[, x0, tol, restart, maxiter, ...]) | Use Generalized Minimal RESidual iteration to solve A x = b. |
lgmres(A, b[, x0, tol, maxiter, M, ...]) | Solve a matrix equation using the LGMRES algorithm. |
minres(A, b[, x0, shift, tol, maxiter, ...]) | Use MINimum RESidual iteration to solve Ax=b MINRES minimizes norm(A*x - b) for a real symmetric matrix A. |
qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) | Use Quasi-Minimal Residual iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real-valued N-by-N matrix of the linear system. |
Iterative methods for least-squares problems:
lsqr(A, b[, damp, atol, btol, conlim, ...]) | Find the least-squares solution to a large, sparse, linear system of equations. |
lsmr(A, b[, damp, atol, btol, conlim, ...]) | Iterative solver for least-squares problems. |
Matrix factorizations¶
Eigenvalue problems:
eigs(A[, k, M, sigma, which, v0, ncv, ...]) | Find k eigenvalues and eigenvectors of the square matrix A. |
eigsh(A[, k, M, sigma, which, v0, ncv, ...]) | Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. |
lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) | Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems. |
Singular values problems:
svds(A[, k, ncv, tol, which, v0, maxiter, ...]) | Compute the largest k singular values/vectors for a sparse matrix. |
Complete or incomplete LU factorizations
splu(A[, permc_spec, diag_pivot_thresh, ...]) | Compute the LU decomposition of a sparse, square matrix. |
spilu(A[, drop_tol, fill_factor, drop_rule, ...]) | Compute an incomplete LU decomposition for a sparse, square matrix. |
SuperLU | LU factorization of a sparse matrix. |
Exceptions¶
ArpackNoConvergence(msg, eigenvalues, ...) | ARPACK iteration did not converge .. |
ArpackError(info[, infodict]) | ARPACK error |
Functions
aslinearoperator(A) | Return A as a LinearOperator. |
bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) | Use BIConjugate Gradient iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real or complex N-by-N matrix of the linear system It is required that the linear operator can produce Ax and A^T x. |
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) | Use BIConjugate Gradient STABilized iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real or complex N-by-N matrix of the linear system A must represent a hermitian, positive definite matrix b : {array, matrix} Right hand side of the linear system. |
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) | Use Conjugate Gradient iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real or complex N-by-N matrix of the linear system A must represent a hermitian, positive definite matrix b : {array, matrix} Right hand side of the linear system. |
cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) | Use Conjugate Gradient Squared iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real-valued N-by-N matrix of the linear system b : {array, matrix} Right hand side of the linear system. |
eigs(A[, k, M, sigma, which, v0, ncv, ...]) | Find k eigenvalues and eigenvectors of the square matrix A. |
eigsh(A[, k, M, sigma, which, v0, ncv, ...]) | Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. |
expm(A) | Compute the matrix exponential using Pade approximation. |
expm_multiply(A, B[, start, stop, num, endpoint]) | Compute the action of the matrix exponential of A on B. |
factorized(A) | Return a fuction for solving a sparse linear system, with A pre-factorized. |
gmres(A, b[, x0, tol, restart, maxiter, ...]) | Use Generalized Minimal RESidual iteration to solve A x = b. |
inv(A) | Compute the inverse of a sparse matrix :Parameters: A : (M,M) ndarray or sparse matrix square matrix to be inverted :Returns: Ainv : (M,M) ndarray or sparse matrix inverse of A .. |
lgmres(A, b[, x0, tol, maxiter, M, ...]) | Solve a matrix equation using the LGMRES algorithm. |
lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) | Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems. |
lsmr(A, b[, damp, atol, btol, conlim, ...]) | Iterative solver for least-squares problems. |
lsqr(A, b[, damp, atol, btol, conlim, ...]) | Find the least-squares solution to a large, sparse, linear system of equations. |
minres(A, b[, x0, shift, tol, maxiter, ...]) | Use MINimum RESidual iteration to solve Ax=b MINRES minimizes norm(A*x - b) for a real symmetric matrix A. |
norm(x[, ord, axis]) | Norm of a sparse matrix This function is able to return one of seven different matrix norms, depending on the value of the ord parameter. |
onenormest(A[, t, itmax, compute_v, compute_w]) | Compute a lower bound of the 1-norm of a sparse matrix. |
qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) | Use Quasi-Minimal Residual iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real-valued N-by-N matrix of the linear system. |
spilu(A[, drop_tol, fill_factor, drop_rule, ...]) | Compute an incomplete LU decomposition for a sparse, square matrix. |
splu(A[, permc_spec, diag_pivot_thresh, ...]) | Compute the LU decomposition of a sparse, square matrix. |
spsolve(A, b[, permc_spec, use_umfpack]) | Solve the sparse linear system Ax=b, where b may be a vector or a matrix. |
svds(A[, k, ncv, tol, which, v0, maxiter, ...]) | Compute the largest k singular values/vectors for a sparse matrix. |
use_solver(**kwargs) | Select default sparse direct solver to be used. |
Classes
LinearOperator(dtype, shape) | Common interface for performing matrix vector products Many iterative methods (e.g. |
SuperLU | LU factorization of a sparse matrix. |
Tester | Nose test runner. |
Exceptions
ArpackError(info[, infodict]) | ARPACK error |
ArpackNoConvergence(msg, eigenvalues, ...) | ARPACK iteration did not converge .. |
MatrixRankWarning |