scipy.integrate.tplquad¶
- scipy.integrate.tplquad(func, a, b, gfun, hfun, qfun, rfun, args=(), epsabs=1.49e-08, epsrel=1.49e-08)[source]¶
Compute a triple (definite) integral.
Return the triple integral of func(z, y, x) from x = a..b, y = gfun(x)..hfun(x), and z = qfun(x,y)..rfun(x,y).
Parameters: func : function
A Python function or method of at least three variables in the order (z, y, x).
a, b : float
The limits of integration in x: a < b
gfun : function
The lower boundary curve in y which is a function taking a single floating point argument (x) and returning a floating point result: a lambda function can be useful here.
hfun : function
The upper boundary curve in y (same requirements as gfun).
qfun : function
The lower boundary surface in z. It must be a function that takes two floats in the order (x, y) and returns a float.
rfun : function
The upper boundary surface in z. (Same requirements as qfun.)
args : tuple, optional
Extra arguments to pass to func.
epsabs : float, optional
Absolute tolerance passed directly to the innermost 1-D quadrature integration. Default is 1.49e-8.
epsrel : float, optional
Relative tolerance of the innermost 1-D integrals. Default is 1.49e-8.
Returns: y : float
The resultant integral.
abserr : float
An estimate of the error.
See also
- quad
- Adaptive quadrature using QUADPACK
- quadrature
- Adaptive Gaussian quadrature
- fixed_quad
- Fixed-order Gaussian quadrature
- dblquad
- Double integrals
- nquad
- N-dimensional integrals
- romb
- Integrators for sampled data
- simps
- Integrators for sampled data
- ode
- ODE integrators
- odeint
- ODE integrators
- scipy.special
- For coefficients and roots of orthogonal polynomials