scipy.fftpack.convolve.init_convolution_kernel¶
- scipy.fftpack.convolve.init_convolution_kernel = <fortran object>¶
- init_convolution_kernel - Function signature:
- omega = init_convolution_kernel(n,kernel_func,[d,zero_nyquist,kernel_func_extra_args])
- Required arguments:
- n : input int kernel_func : call-back function
- Optional arguments:
- d := 0 input int kernel_func_extra_args := () input tuple zero_nyquist := d%2 input int
- Return objects:
- omega : rank-1 array(‘d’) with bounds (n)
- Call-back functions:
def kernel_func(k): return kernel_func Required arguments:
k : input int- Return objects:
- kernel_func : float