SciPy

This is documentation for an old release of SciPy (version 0.16.1). Read this page in the documentation of the latest stable release (version 1.15.1).

Von Mises Distribution

Defined for \(x\in\left[-\pi,\pi\right]\) with shape parameter \(\kappa>0\) . Note, the PDF and CDF functions are periodic and are always defined over \(x\in\left[-\pi,\pi\right]\) regardless of the location parameter. Thus, if an input beyond this range is given, it is converted to the equivalent angle in this range. For values of \(\kappa<100\) the PDF and CDF formulas below are used. Otherwise, a normal approximation with variance \(1/\kappa\) is used.

\[ \begin{eqnarray*} f\left(x;\kappa\right) & = & \frac{e^{\kappa\cos x}}{2\pi I_{0}\left(\kappa\right)}\\ F\left(x;\kappa\right) & = & \frac{1}{2}+\frac{x}{2\pi}+\sum_{k=1}^{\infty}\frac{I_{k}\left(\kappa\right)\sin\left(kx\right)}{I_{0}\left(\kappa\right)\pi k}\\ G\left(q; \kappa\right) & = & F^{-1}\left(x;\kappa\right)\end{eqnarray*}\]
\[ \begin{eqnarray*} \mu & = & 0\\ \mu_{2} & = & \int_{-\pi}^{\pi}x^{2}f\left(x;\kappa\right)dx\\ \gamma_{1} & = & 0\\ \gamma_{2} & = & \frac{\int_{-\pi}^{\pi}x^{4}f\left(x;\kappa\right)dx}{\mu_{2}^{2}}-3\end{eqnarray*}\]

This can be used for defining circular variance.

Implementation: scipy.stats.vonmises