SciPy

This is documentation for an old release of SciPy (version 0.16.1). Read this page in the documentation of the latest stable release (version 1.15.1).

Fréchet (ExtremeLB, Extreme Value II, Weibull minimum) Distribution

A type of extreme-value distribution with a lower bound. Defined for \(x>0\) and \(c>0\)

\[ \begin{eqnarray*} f\left(x;c\right) & = & cx^{c-1}\exp\left(-x^{c}\right)\\ F\left(x;c\right) & = & 1-\exp\left(-x^{c}\right)\\ G\left(q;c\right) & = & \left[-\log\left(1-q\right)\right]^{1/c}\end{eqnarray*}\]
\[\mu_{n}^{\prime}=\Gamma\left(1+\frac{n}{c}\right)\]
\[ \begin{eqnarray*} \mu & = & \Gamma\left(1+\frac{1}{c}\right)\\ \mu_{2} & = & \Gamma\left(1+\frac{2}{c}\right)-\Gamma^{2}\left(1-\frac{1}{c}\right)\\ \gamma_{1} & = & \frac{\Gamma\left(1+\frac{3}{c}\right)-3\Gamma\left(1+\frac{2}{c}\right)\Gamma\left(1+\frac{1}{c}\right)+2\Gamma^{3}\left(1+\frac{1}{c}\right)}{\mu_{2}^{3/2}}\\ \gamma_{2} & = & \frac{\Gamma\left(1+\frac{4}{c}\right)-4\Gamma\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{3}{c}\right)+6\Gamma^{2}\left(1+\frac{1}{c}\right)\Gamma\left(1+\frac{2}{c}\right)-\Gamma^{4}\left(1+\frac{1}{c}\right)}{\mu_{2}^{2}}-3\\ m_{d} & = & \left(\frac{c}{1+c}\right)^{1/c}\\ m_{n} & = & G\left(\frac{1}{2};c\right)\end{eqnarray*}\]
\[h\left[X\right]=-\frac{\gamma}{c}-\log\left(c\right)+\gamma+1\]

where \(\gamma\) is Euler’s constant and equal to

\[\gamma\approx0.57721566490153286061.\]

Implementation: scipy.stats.frechet_r