scipy.optimize.minimize(fun, x0, args=(), method='Nelder-Mead', tol=None, callback=None, options={'disp': False, 'maxiter': None, 'return_all': False, 'func': None, 'maxfev': None, 'xtol': 0.0001, 'ftol': 0.0001})

Minimization of scalar function of one or more variables using the Nelder-Mead algorithm.

See also

For documentation for the rest of the parameters, see scipy.optimize.minimize


disp : bool

Set to True to print convergence messages.

xtol : float

Relative error in solution xopt acceptable for convergence.

ftol : float

Relative error in fun(xopt) acceptable for convergence.

maxiter : int

Maximum number of iterations to perform.

maxfev : int

Maximum number of function evaluations to make.