scipy.stats.ttest_1samp¶
- scipy.stats.ttest_1samp(a, popmean, axis=0)[source]¶
Calculates the T-test for the mean of ONE group of scores.
This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations a is equal to the given population mean, popmean.
Parameters: a : array_like
sample observation
popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the same shape as a excluding the axis dimension
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole array a.
Returns: statistic : float or array
t-statistic
pvalue : float or array
two-tailed p-value
Examples
>>> from scipy import stats
>>> np.random.seed(7654567) # fix seed to get the same result >>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))
Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don’t reject it in the first case.
>>> stats.ttest_1samp(rvs,5.0) (array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674])) >>> stats.ttest_1samp(rvs,0.0) (array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999]))
Examples using axis and non-scalar dimension for population mean.
>>> stats.ttest_1samp(rvs,[5.0,0.0]) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs,[[5.0],[0.0]]) (array([[-0.68014479, -0.04323899], [ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01], [ 7.89094663e-03, 1.49986458e-04]]))