scipy.stats.kstat¶
- scipy.stats.kstat(data, n=2)[source]¶
Return the nth k-statistic (1<=n<=4 so far).
The nth k-statistic is the unique symmetric unbiased estimator of the nth cumulant kappa_n.
Parameters: data : array_like
Input array.
n : int, {1, 2, 3, 4}, optional
Default is equal to 2.
Returns: kstat : float
The nth k-statistic.
See also
- kstatvar
- Returns an unbiased estimator of the variance of the k-statistic.
Notes
The cumulants are related to central moments but are specifically defined using a power series expansion of the logarithm of the characteristic function (which is the Fourier transform of the PDF). In particular let phi(t) be the characteristic function, then:
ln phi(t) = > kappa_n (it)^n / n! (sum from n=0 to inf)
The first few cumulants (kappa_n) in terms of central moments (mu_n) are:
kappa_1 = mu_1 kappa_2 = mu_2 kappa_3 = mu_3 kappa_4 = mu_4 - 3*mu_2**2 kappa_5 = mu_5 - 10*mu_2 * mu_3
References