SciPy

scipy.stats.chi

scipy.stats.chi = <scipy.stats._continuous_distns.chi_gen object at 0x45035a2c>[source]

A chi continuous random variable.

As an instance of the rv_continuous class, chi object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for chi is:

chi.pdf(x, df) = x**(df-1) * exp(-x**2/2) / (2**(df/2-1) * gamma(df/2))

for x > 0.

Special cases of chi are:

  • chi(1, loc, scale) is equivalent to halfnorm
  • chi(2, 0, scale) is equivalent to rayleigh
  • chi(3, 0, scale) is equivalent to maxwell

chi takes df as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, chi.pdf(x, df, loc, scale) is identically equivalent to chi.pdf(y, df) / scale with y = (x - loc) / scale.

Examples

>>> from scipy.stats import chi
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>> df = 78
>>> mean, var, skew, kurt = chi.stats(df, moments='mvsk')

Display the probability density function (pdf):

>>> x = np.linspace(chi.ppf(0.01, df),
...                 chi.ppf(0.99, df), 100)
>>> ax.plot(x, chi.pdf(x, df),
...        'r-', lw=5, alpha=0.6, label='chi pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>> rv = chi(df)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>> vals = chi.ppf([0.001, 0.5, 0.999], df)
>>> np.allclose([0.001, 0.5, 0.999], chi.cdf(vals, df))
True

Generate random numbers:

>>> r = chi.rvs(df, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

(Source code)

../_images/scipy-stats-chi-1.png

Methods

rvs(df, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, df, loc=0, scale=1) Probability density function.
logpdf(x, df, loc=0, scale=1) Log of the probability density function.
cdf(x, df, loc=0, scale=1) Cumulative density function.
logcdf(x, df, loc=0, scale=1) Log of the cumulative density function.
sf(x, df, loc=0, scale=1) Survival function (1 - cdf — sometimes more accurate).
logsf(x, df, loc=0, scale=1) Log of the survival function.
ppf(q, df, loc=0, scale=1) Percent point function (inverse of cdf — percentiles).
isf(q, df, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, df, loc=0, scale=1) Non-central moment of order n
stats(df, loc=0, scale=1, moments='mv') Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(df, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, df, loc=0, scale=1) Parameter estimates for generic data.
expect(func, df, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution.
median(df, loc=0, scale=1) Median of the distribution.
mean(df, loc=0, scale=1) Mean of the distribution.
var(df, loc=0, scale=1) Variance of the distribution.
std(df, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, df, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution

Previous topic

scipy.stats.cauchy

Next topic

scipy.stats.chi2