scipy.stats.rv_continuous.fit¶
- rv_continuous.fit(data, *args, **kwds)[source]¶
Return MLEs for shape, location, and scale parameters from data.
MLE stands for Maximum Likelihood Estimate. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, self._fitstart(data) is called to generate such.
One can hold some parameters fixed to specific values by passing in keyword arguments f0, f1, ..., fn (for shape parameters) and floc and fscale (for location and scale parameters, respectively).
Parameters: data : array_like
Data to use in calculating the MLEs.
args : floats, optional
Starting value(s) for any shape-characterizing arguments (those not provided will be determined by a call to _fitstart(data)). No default value.
kwds : floats, optional
Starting values for the location and scale parameters; no default. Special keyword arguments are recognized as holding certain parameters fixed:
- f0...fn : hold respective shape parameters fixed. Alternatively, shape parameters to fix can be specified by name. For example, if self.shapes == "a, b", fa is equivalent to f0 and fb is equivalent to f1.
- floc : hold location parameter fixed to specified value.
- fscale : hold scale parameter fixed to specified value.
- optimizer : The optimizer to use. The optimizer must take func, and starting position as the first two arguments, plus args (for extra arguments to pass to the function to be optimized) and disp=0 to suppress output as keyword arguments.
Returns: shape, loc, scale : tuple of floats
MLEs for any shape statistics, followed by those for location and scale.
Notes
This fit is computed by maximizing a log-likelihood function, with penalty applied for samples outside of range of the distribution. The returned answer is not guaranteed to be the globally optimal MLE, it may only be locally optimal, or the optimization may fail altogether.
Examples
Generate some data to fit: draw random variates from the beta distribution
>>> from scipy.stats import beta >>> a, b = 1., 2. >>> x = beta.rvs(a, b, size=1000)
Now we can fit all four parameters (a, b, loc and scale):
>>> a1, b1, loc1, scale1 = beta.fit(x)
We can also use some prior knowledge about the dataset: let’s keep loc and scale fixed:
>>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1) >>> loc1, scale1 (0, 1)
We can also keep shape parameters fixed by using f-keywords. To keep the zero-th shape parameter a equal 1, use f0=1 or, equivalently, fa=1:
>>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1) >>> a1 1