scipy.stats.powerlognorm¶
- scipy.stats.powerlognorm = <scipy.stats._continuous_distns.powerlognorm_gen object at 0x45083fcc>[source]¶
A power log-normal continuous random variable.
As an instance of the rv_continuous class, powerlognorm object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
The probability density function for powerlognorm is:
powerlognorm.pdf(x, c, s) = c / (x*s) * phi(log(x)/s) * (Phi(-log(x)/s))**(c-1),
where phi is the normal pdf, and Phi is the normal cdf, and x > 0, s, c > 0.
powerlognorm takes c and s as shape parameters.
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, powerlognorm.pdf(x, c, s, loc, scale) is identically equivalent to powerlognorm.pdf(y, c, s) / scale with y = (x - loc) / scale.
Examples
>>> from scipy.stats import powerlognorm >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> c, s = 2.14, 0.446 >>> mean, var, skew, kurt = powerlognorm.stats(c, s, moments='mvsk')
Display the probability density function (pdf):
>>> x = np.linspace(powerlognorm.ppf(0.01, c, s), ... powerlognorm.ppf(0.99, c, s), 100) >>> ax.plot(x, powerlognorm.pdf(x, c, s), ... 'r-', lw=5, alpha=0.6, label='powerlognorm pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen pdf:
>>> rv = powerlognorm(c, s) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of cdf and ppf:
>>> vals = powerlognorm.ppf([0.001, 0.5, 0.999], c, s) >>> np.allclose([0.001, 0.5, 0.999], powerlognorm.cdf(vals, c, s)) True
Generate random numbers:
>>> r = powerlognorm.rvs(c, s, size=1000)
And compare the histogram:
>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(c, s, loc=0, scale=1, size=1, random_state=None) Random variates. pdf(x, c, s, loc=0, scale=1) Probability density function. logpdf(x, c, s, loc=0, scale=1) Log of the probability density function. cdf(x, c, s, loc=0, scale=1) Cumulative density function. logcdf(x, c, s, loc=0, scale=1) Log of the cumulative density function. sf(x, c, s, loc=0, scale=1) Survival function (1 - cdf — sometimes more accurate). logsf(x, c, s, loc=0, scale=1) Log of the survival function. ppf(q, c, s, loc=0, scale=1) Percent point function (inverse of cdf — percentiles). isf(q, c, s, loc=0, scale=1) Inverse survival function (inverse of sf). moment(n, c, s, loc=0, scale=1) Non-central moment of order n stats(c, s, loc=0, scale=1, moments='mv') Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(c, s, loc=0, scale=1) (Differential) entropy of the RV. fit(data, c, s, loc=0, scale=1) Parameter estimates for generic data. expect(func, c, s, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(c, s, loc=0, scale=1) Median of the distribution. mean(c, s, loc=0, scale=1) Mean of the distribution. var(c, s, loc=0, scale=1) Variance of the distribution. std(c, s, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, c, s, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution