SciPy

This is documentation for an old release of SciPy (version 0.16.0). Read this page in the documentation of the latest stable release (version 1.15.0).

scipy.stats.betaprime

scipy.stats.betaprime = <scipy.stats._continuous_distns.betaprime_gen object at 0x4503512c>[source]

A beta prime continuous random variable.

As an instance of the rv_continuous class, betaprime object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for betaprime is:

betaprime.pdf(x, a, b) = x**(a-1) * (1+x)**(-a-b) / beta(a, b)

for x > 0, a > 0, b > 0, where beta(a, b) is the beta function (see scipy.special.beta).

betaprime takes a and b as shape parameters.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, betaprime.pdf(x, a, b, loc, scale) is identically equivalent to betaprime.pdf(y, a, b) / scale with y = (x - loc) / scale.

Examples

>>>
>>> from scipy.stats import betaprime
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

>>>
>>> a, b = 5, 6
>>> mean, var, skew, kurt = betaprime.stats(a, b, moments='mvsk')

Display the probability density function (pdf):

>>>
>>> x = np.linspace(betaprime.ppf(0.01, a, b),
...                 betaprime.ppf(0.99, a, b), 100)
>>> ax.plot(x, betaprime.pdf(x, a, b),
...        'r-', lw=5, alpha=0.6, label='betaprime pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

>>>
>>> rv = betaprime(a, b)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

>>>
>>> vals = betaprime.ppf([0.001, 0.5, 0.999], a, b)
>>> np.allclose([0.001, 0.5, 0.999], betaprime.cdf(vals, a, b))
True

Generate random numbers:

>>>
>>> r = betaprime.rvs(a, b, size=1000)

And compare the histogram:

>>>
>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

(Source code)

../_images/scipy-stats-betaprime-1.png

Methods

rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, a, b, loc=0, scale=1) Probability density function.
logpdf(x, a, b, loc=0, scale=1) Log of the probability density function.
cdf(x, a, b, loc=0, scale=1) Cumulative density function.
logcdf(x, a, b, loc=0, scale=1) Log of the cumulative density function.
sf(x, a, b, loc=0, scale=1) Survival function (1 - cdf — sometimes more accurate).
logsf(x, a, b, loc=0, scale=1) Log of the survival function.
ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of cdf — percentiles).
isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(n, a, b, loc=0, scale=1) Non-central moment of order n
stats(a, b, loc=0, scale=1, moments='mv') Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, b, loc=0, scale=1) Parameter estimates for generic data.
expect(func, a, b, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution.
median(a, b, loc=0, scale=1) Median of the distribution.
mean(a, b, loc=0, scale=1) Mean of the distribution.
var(a, b, loc=0, scale=1) Variance of the distribution.
std(a, b, loc=0, scale=1) Standard deviation of the distribution.
interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution

Previous topic

scipy.stats.beta

Next topic

scipy.stats.bradford