scipy.optimize.LbfgsInvHessProduct¶
- class scipy.optimize.LbfgsInvHessProduct(sk, yk)[source]¶
- Linear operator for the L-BFGS approximate inverse Hessian. - This operator computes the product of a vector with the approximate inverse of the Hessian of the objective function, using the L-BFGS limited memory approximation to the inverse Hessian, accumulated during the optimization. - Parameters: - sk : array_like, shape=(n_corr, n) - Array of n_corr most recent updates to the solution vector. (See [1]). - yk : array_like, shape=(n_corr, n) - Array of n_corr most recent updates to the gradient. (See [1]). - References - [R126] - Nocedal, Jorge. “Updating quasi-Newton matrices with limited storage.” Mathematics of computation 35.151 (1980): 773-782. - Attributes - H - Hermitian adjoint. - T - Transpose this linear operator. - Methods - __call__(x) - adjoint() - Hermitian adjoint. - dot(x) - Matrix-matrix or matrix-vector multiplication. - matmat(X) - Matrix-matrix multiplication. - matvec(x) - Matrix-vector multiplication. - rmatvec(x) - Adjoint matrix-vector multiplication. - todense() - Return a dense array representation of this operator. - transpose() - Transpose this linear operator. 
