scipy.linalg.rq¶
- scipy.linalg.rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True)[source]¶
Compute RQ decomposition of a matrix.
Calculate the decomposition A = R Q where Q is unitary/orthogonal and R upper triangular.
Parameters: a : (M, N) array_like
Matrix to be decomposed
overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)
lwork : int, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed.
mode : {‘full’, ‘r’, ‘economic’}, optional
Determines what information is to be returned: either both Q and R (‘full’, default), only R (‘r’) or both Q and R but computed in economy-size (‘economic’, see Notes).
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns: R : float or complex ndarray
Of shape (M, N) or (M, K) for mode='economic'. K = min(M, N).
Q : float or complex ndarray
Of shape (N, N) or (K, N) for mode='economic'. Not returned if mode='r'.
Raises: LinAlgError
If decomposition fails.
Notes
This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf, sorgrq, dorgrq, cungrq and zungrq.
If mode=economic, the shapes of Q and R are (K, N) and (M, K) instead of (N,N) and (M,N), with K=min(M,N).
Examples
>>> from scipy import linalg >>> from numpy import random, dot, allclose >>> a = random.randn(6, 9) >>> r, q = linalg.rq(a) >>> allclose(a, dot(r, q)) True >>> r.shape, q.shape ((6, 9), (9, 9)) >>> r2 = linalg.rq(a, mode='r') >>> allclose(r, r2) True >>> r3, q3 = linalg.rq(a, mode='economic') >>> r3.shape, q3.shape ((6, 6), (6, 9))