scipy.interpolate.RectBivariateSpline¶
- class scipy.interpolate.RectBivariateSpline(x, y, z, bbox=[None, None, None, None], kx=3, ky=3, s=0)[source]¶
Bivariate spline approximation over a rectangular mesh.
Can be used for both smoothing and interpolating data.
Parameters: x,y : array_like
1-D arrays of coordinates in strictly ascending order.
z : array_like
2-D array of data with shape (x.size,y.size).
bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)].
kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.
s : float, optional
Positive smoothing factor defined for estimation condition: sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s Default is s=0, which is for interpolation.
See also
- SmoothBivariateSpline
- a smoothing bivariate spline for scattered data
- bisplrep
- an older wrapping of FITPACK
- bisplev
- an older wrapping of FITPACK
- UnivariateSpline
- a similar class for univariate spline interpolation
Methods
__call__(x, y[, mth, dx, dy, grid]) Evaluate the spline or its derivatives at given positions. ev(xi, yi[, dx, dy]) Evaluate the spline at points Returns the interpolated value at (xi[i], yi[i]), i=0,...,len(xi)-1. get_coeffs() Return spline coefficients. get_knots() Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. get_residual() Return weighted sum of squared residuals of the spline integral(xa, xb, ya, yb) Evaluate the integral of the spline over area [xa,xb] x [ya,yb].