scipy.interpolate.InterpolatedUnivariateSpline¶
- class scipy.interpolate.InterpolatedUnivariateSpline(x, y, w=None, bbox=[None, None], k=3, ext=0)[source]¶
One-dimensional interpolating spline for a given set of data points.
Fits a spline y = spl(x) of degree k to the provided x, y data. Spline function passes through all provided points. Equivalent to UnivariateSpline with s=0.
Parameters: x : (N,) array_like
Input dimension of data points – must be increasing
y : (N,) array_like
input dimension of data points
w : (N,) array_like, optional
Weights for spline fitting. Must be positive. If None (default), weights are all equal.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If None (default), bbox=[x[0], x[-1]].
k : int, optional
Degree of the smoothing spline. Must be 1 <= k <= 5.
ext : int or str, optional
Controls the extrapolation mode for elements not in the interval defined by the knot sequence.
- if ext=0 or ‘extrapolate’, return the extrapolated value.
- if ext=1 or ‘zeros’, return 0
- if ext=2 or ‘raise’, raise a ValueError
- if ext=3 of ‘const’, return the boundary value.
The default value is 0.
See also
- UnivariateSpline
- Superclass – allows knots to be selected by a smoothing condition
- LSQUnivariateSpline
- spline for which knots are user-selected
- splrep
- An older, non object-oriented wrapping of FITPACK
- BivariateSpline
- A similar class for two-dimensional spline interpolation
Notes
The number of data points must be larger than the spline degree k.
Examples
>>> import matplotlib.pyplot as plt >>> from scipy.interpolate import InterpolatedUnivariateSpline >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50) >>> spl = InterpolatedUnivariateSpline(x, y) >>> plt.plot(x, y, 'ro', ms=5) >>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7) >>> plt.show()
Notice that the spl(x) interpolates y:
>>> spl.get_residual() 0.0
Methods
__call__(x[, nu, ext]) Evaluate spline (or its nu-th derivative) at positions x. antiderivative([n]) Construct a new spline representing the antiderivative of this spline. derivative([n]) Construct a new spline representing the derivative of this spline. derivatives(x) Return all derivatives of the spline at the point x. get_coeffs() Return spline coefficients. get_knots() Return positions of (boundary and interior) knots of the spline. get_residual() Return weighted sum of squared residuals of the spline approximation: sum((w[i] * (y[i]-spl(x[i])))**2, axis=0). integral(a, b) Return definite integral of the spline between two given points. roots() Return the zeros of the spline. set_smoothing_factor(s) Continue spline computation with the given smoothing factor s and with the knots found at the last call.