scipy.linalg.pinvh¶
- scipy.linalg.pinvh(a, cond=None, rcond=None, lower=True, return_rank=False, check_finite=True)[source]¶
Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.
Calculate a generalized inverse of a Hermitian or real symmetric matrix using its eigenvalue decomposition and including all eigenvalues with ‘large’ absolute value.
Parameters: a : (N, N) array_like
Real symmetric or complex hermetian matrix to be pseudo-inverted
cond, rcond : float or None
Cutoff for ‘small’ eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero.
If None or -1, suitable machine precision is used.
lower : bool
Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower)
return_rank : bool, optional
if True, return the effective rank of the matrix
check_finite : boolean, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns: B : (N, N) ndarray
The pseudo-inverse of matrix a.
rank : int
The effective rank of the matrix. Returned if return_rank == True
Raises: LinAlgError
If eigenvalue does not converge
Examples
>>> import numpy as np >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True