scipy.stats.ttest_1samp¶
- scipy.stats.ttest_1samp(a, popmean, axis=0)[source]¶
- Calculates the T-test for the mean of ONE group of scores. - This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations a is equal to the given population mean, popmean. - Parameters : - a : array_like - sample observation - popmean : float or array_like - expected value in null hypothesis, if array_like than it must have the same shape as a excluding the axis dimension - axis : int, optional, (default axis=0) - Axis can equal None (ravel array first), or an integer (the axis over which to operate on a). - Returns : - t : float or array - t-statistic - prob : float or array - two-tailed p-value - Examples - >>> from scipy import stats - >>> np.random.seed(7654567) # fix seed to get the same result >>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2)) - Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don’t reject it in the first case. - >>> stats.ttest_1samp(rvs,5.0) (array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674])) >>> stats.ttest_1samp(rvs,0.0) (array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999])) - Examples using axis and non-scalar dimension for population mean. - >>> stats.ttest_1samp(rvs,[5.0,0.0]) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs,[[5.0],[0.0]]) (array([[-0.68014479, -0.04323899], [ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01], [ 7.89094663e-03, 1.49986458e-04]])) 
