scipy.stats.ncf¶
- scipy.stats.ncf = <scipy.stats.distributions.ncf_gen object at 0x4dc0110>[source]¶
A non-central F distribution continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters : x : array_like
quantiles
q : array_like
lower or upper tail probability
dfn, dfd, nc : array_like
shape parameters
loc : array_like, optional
location parameter (default=0)
scale : array_like, optional
scale parameter (default=1)
size : int or tuple of ints, optional
shape of random variates (default computed from input arguments )
moments : str, optional
composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)
Alternatively, the object may be called (as a function) to fix the shape,
location, and scale parameters returning a “frozen” continuous RV object:
rv = ncf(dfn, dfd, nc, loc=0, scale=1)
- Frozen RV object with the same methods but holding the given shape, location, and scale fixed.
Notes
The probability density function for ncf is:
- ncf.pdf(x, df1, df2, nc) = exp(nc/2 + nc*df1*x/(2*(df1*x+df2)))
- df1**(df1/2) * df2**(df2/2) * x**(df1/2-1)
- (df2+df1*x)**(-(df1+df2)/2)
- gamma(df1/2)*gamma(1+df2/2)
- L^{v1/2-1}^{v2/2}(-nc*v1*x/(2*(v1*x+v2)))
/ (B(v1/2, v2/2) * gamma((v1+v2)/2))
for df1, df2, nc > 0.
Examples
>>> from scipy.stats import ncf >>> numargs = ncf.numargs >>> [ dfn, dfd, nc ] = [0.9,] * numargs >>> rv = ncf(dfn, dfd, nc)
Display frozen pdf
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3)) >>> h = plt.plot(x, rv.pdf(x))
Here, rv.dist.b is the right endpoint of the support of rv.dist.
Check accuracy of cdf and ppf
>>> prb = ncf.cdf(x, dfn, dfd, nc) >>> h = plt.semilogy(np.abs(x - ncf.ppf(prb, dfn, dfd, nc)) + 1e-20)
Random number generation
>>> R = ncf.rvs(dfn, dfd, nc, size=100)
Methods
rvs(dfn, dfd, nc, loc=0, scale=1, size=1) Random variates. pdf(x, dfn, dfd, nc, loc=0, scale=1) Probability density function. logpdf(x, dfn, dfd, nc, loc=0, scale=1) Log of the probability density function. cdf(x, dfn, dfd, nc, loc=0, scale=1) Cumulative density function. logcdf(x, dfn, dfd, nc, loc=0, scale=1) Log of the cumulative density function. sf(x, dfn, dfd, nc, loc=0, scale=1) Survival function (1-cdf — sometimes more accurate). logsf(x, dfn, dfd, nc, loc=0, scale=1) Log of the survival function. ppf(q, dfn, dfd, nc, loc=0, scale=1) Percent point function (inverse of cdf — percentiles). isf(q, dfn, dfd, nc, loc=0, scale=1) Inverse survival function (inverse of sf). moment(n, dfn, dfd, nc, loc=0, scale=1) Non-central moment of order n stats(dfn, dfd, nc, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(dfn, dfd, nc, loc=0, scale=1) (Differential) entropy of the RV. fit(data, dfn, dfd, nc, loc=0, scale=1) Parameter estimates for generic data. expect(func, dfn, dfd, nc, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(dfn, dfd, nc, loc=0, scale=1) Median of the distribution. mean(dfn, dfd, nc, loc=0, scale=1) Mean of the distribution. var(dfn, dfd, nc, loc=0, scale=1) Variance of the distribution. std(dfn, dfd, nc, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, dfn, dfd, nc, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution