scipy.stats.nanstd¶
- scipy.stats.nanstd(x, axis=0, bias=False)[source]¶
Compute the standard deviation over the given axis, ignoring nans.
Parameters : x : array_like
Input array.
axis : int or None, optional
Axis along which the standard deviation is computed. Default is 0. If None, compute over the whole array x.
bias : bool, optional
If True, the biased (normalized by N) definition is used. If False (default), the unbiased definition is used.
Returns : s : float
The standard deviation.
Examples
>>> from scipy import stats >>> a = np.arange(10, dtype=float) >>> a[1:3] = np.nan >>> np.std(a) nan >>> stats.nanstd(a) 2.9154759474226504 >>> stats.nanstd(a.reshape(2, 5), axis=1) array([ 2.0817, 1.5811]) >>> stats.nanstd(a.reshape(2, 5), axis=None) 2.9154759474226504