scipy.stats.mstats.mquantiles¶
- scipy.stats.mstats.mquantiles(a, prob=[0.25, 0.5, 0.75], alphap=0.4, betap=0.4, axis=None, limit=())[source]¶
Computes empirical quantiles for a data array.
Samples quantile are defined by Q(p) = (1-gamma)*x[j] + gamma*x[j+1], where x[j] is the j-th order statistic, and gamma is a function of j = floor(n*p + m), m = alphap + p*(1 - alphap - betap) and g = n*p + m - j.
Reinterpreting the above equations to compare to R lead to the equation: p(k) = (k - alphap)/(n + 1 - alphap - betap)
- Typical values of (alphap,betap) are:
- (0,1) : p(k) = k/n : linear interpolation of cdf (R type 4)
- (.5,.5) : p(k) = (k - 1/2.)/n : piecewise linear function (R type 5)
- (0,0) : p(k) = k/(n+1) : (R type 6)
- (1,1) : p(k) = (k-1)/(n-1): p(k) = mode[F(x[k])]. (R type 7, R default)
- (1/3,1/3): p(k) = (k-1/3)/(n+1/3): Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)
- (3/8,3/8): p(k) = (k-3/8)/(n+1/4): Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9)
- (.4,.4) : approximately quantile unbiased (Cunnane)
- (.35,.35): APL, used with PWM
Parameters : a : array_like
Input data, as a sequence or array of dimension at most 2.
prob : array_like, optional
List of quantiles to compute.
alphap : float, optional
Plotting positions parameter, default is 0.4.
betap : float, optional
Plotting positions parameter, default is 0.4.
axis : int, optional
Axis along which to perform the trimming. If None (default), the input array is first flattened.
limit : tuple
Tuple of (lower, upper) values. Values of a outside this open interval are ignored.
Returns : mquantiles : MaskedArray
An array containing the calculated quantiles.
Notes
This formulation is very similar to R except the calculation of m from alphap and betap, where in R m is defined with each type.
References
[R230] R statistical software at http://www.r-project.org/ Examples
>>> from scipy.stats.mstats import mquantiles >>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.]) >>> mquantiles(a) array([ 19.2, 40. , 42.8])
Using a 2D array, specifying axis and limit.
>>> data = np.array([[ 6., 7., 1.], [ 47., 15., 2.], [ 49., 36., 3.], [ 15., 39., 4.], [ 42., 40., -999.], [ 41., 41., -999.], [ 7., -999., -999.], [ 39., -999., -999.], [ 43., -999., -999.], [ 40., -999., -999.], [ 36., -999., -999.]]) >>> mquantiles(data, axis=0, limit=(0, 50)) array([[ 19.2 , 14.6 , 1.45], [ 40. , 37.5 , 2.5 ], [ 42.8 , 40.05, 3.55]])
>>> data[:, 2] = -999. >>> mquantiles(data, axis=0, limit=(0, 50)) masked_array(data = [[19.2 14.6 --] [40.0 37.5 --] [42.8 40.05 --]], mask = [[False False True] [False False True] [False False True]], fill_value = 1e+20)