SciPy

scipy.ndimage.morphology.grey_erosion

scipy.ndimage.morphology.grey_erosion(input, size=None, footprint=None, structure=None, output=None, mode='reflect', cval=0.0, origin=0)[source]

Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring element.

Grayscale erosion is a mathematical morphology operation. For the simple case of a full and flat structuring element, it can be viewed as a minimum filter over a sliding window.

Parameters :

input : array_like

Array over which the grayscale erosion is to be computed.

size : tuple of ints

Shape of a flat and full structuring element used for the grayscale erosion. Optional if footprint or structure is provided.

footprint : array of ints, optional

Positions of non-infinite elements of a flat structuring element used for the grayscale erosion. Non-zero values give the set of neighbors of the center over which the minimum is chosen.

structure : array of ints, optional

Structuring element used for the grayscale erosion. structure may be a non-flat structuring element.

output : array, optional

An array used for storing the ouput of the erosion may be provided.

mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional

The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’. Default is ‘reflect’

cval : scalar, optional

Value to fill past edges of input if mode is ‘constant’. Default is 0.0.

origin : scalar, optional

The origin parameter controls the placement of the filter. Default 0

Returns :

output : ndarray

Grayscale erosion of input.

Notes

The grayscale erosion of an image input by a structuring element s defined over a domain E is given by:

(input+s)(x) = min {input(y) - s(x-y), for y in E}

In particular, for structuring elements defined as s(y) = 0 for y in E, the grayscale erosion computes the minimum of the input image inside a sliding window defined by E.

Grayscale erosion [R82] is a mathematical morphology operation [R83].

References

[R82](1, 2) http://en.wikipedia.org/wiki/Erosion_%28morphology%29
[R83](1, 2) http://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> a = np.zeros((7,7), dtype=np.int)
>>> a[1:6, 1:6] = 3
>>> a[4,4] = 2; a[2,3] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 3, 3, 3, 3, 3, 0],
       [0, 3, 3, 1, 3, 3, 0],
       [0, 3, 3, 3, 3, 3, 0],
       [0, 3, 3, 3, 2, 3, 0],
       [0, 3, 3, 3, 3, 3, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 3, 2, 2, 0, 0],
       [0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0]])
>>> footprint = ndimage.generate_binary_structure(2, 1)
>>> footprint
array([[False,  True, False],
       [ True,  True,  True],
       [False,  True, False]], dtype=bool)
>>> # Diagonally-connected elements are not considered neighbors
>>> ndimage.grey_erosion(a, size=(3,3), footprint=footprint)
array([[0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 1, 1, 0, 0],
       [0, 0, 3, 1, 2, 0, 0],
       [0, 0, 3, 2, 2, 0, 0],
       [0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0]])