scipy.ndimage.morphology.binary_hit_or_miss¶
- scipy.ndimage.morphology.binary_hit_or_miss(input, structure1=None, structure2=None, output=None, origin1=0, origin2=None)[source]¶
Multi-dimensional binary hit-or-miss transform.
The hit-or-miss transform finds the locations of a given pattern inside the input image.
Parameters : input : array_like (cast to booleans)
Binary image where a pattern is to be detected.
structure1 : array_like (cast to booleans), optional
Part of the structuring element to be fitted to the foreground (non-zero elements) of input. If no value is provided, a structure of square connectivity 1 is chosen.
structure2 : array_like (cast to booleans), optional
Second part of the structuring element that has to miss completely the foreground. If no value is provided, the complementary of structure1 is taken.
output : ndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new array is created.
origin1 : int or tuple of ints, optional
Placement of the first part of the structuring element structure1, by default 0 for a centered structure.
origin2 : int or tuple of ints, optional
Placement of the second part of the structuring element structure2, by default 0 for a centered structure. If a value is provided for origin1 and not for origin2, then origin2 is set to origin1.
Returns : binary_hit_or_miss : ndarray
Hit-or-miss transform of input with the given structuring element (structure1, structure2).
See also
ndimage.morphology, binary_erosion
References
[R74] http://en.wikipedia.org/wiki/Hit-or-miss_transform Examples
>>> a = np.zeros((7,7), dtype=np.int) >>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1 >>> a array([[0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0]]) >>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]]) >>> structure1 array([[1, 0, 0], [0, 1, 1], [0, 1, 1]]) >>> # Find the matches of structure1 in the array a >>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(np.int) array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) >>> # Change the origin of the filter >>> # origin1=1 is equivalent to origin1=(1,1) here >>> ndimage.binary_hit_or_miss(a, structure1=structure1,\ ... origin1=1).astype(np.int) array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0]])