scipy.linalg.interpolative.svd¶
- scipy.linalg.interpolative.svd(A, eps_or_k, rand=True)[source]¶
Compute SVD of a matrix via an ID.
An SVD of a matrix A is a factorization:
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
where U and V have orthonormal columns and S is nonnegative.
The SVD can be computed to any relative precision or rank (depending on the value of eps_or_k).
See also interp_decomp and id_to_svd.
Parameters : A : numpy.ndarray or scipy.sparse.linalg.LinearOperator
Matrix to be factored, given as either a numpy.ndarray or a scipy.sparse.linalg.LinearOperator with the matvec and rmatvec methods (to apply the matrix and its adjoint).
eps_or_k : float or int
Relative error (if eps_or_k < 1) or rank (if eps_or_k >= 1) of approximation.
rand : bool, optional
Whether to use random sampling if A is of type numpy.ndarray (randomized algorithms are always used if A is of type scipy.sparse.linalg.LinearOperator).
Returns : U : numpy.ndarray
Left singular vectors.
S : numpy.ndarray
Singular values.
V : numpy.ndarray
Right singular vectors.