scipy.interpolate.interp1d¶
- class scipy.interpolate.interp1d(x, y, kind='linear', axis=-1, copy=True, bounds_error=True, fill_value=np.nan)[source]¶
- Interpolate a 1-D function. - x and y are arrays of values used to approximate some function f: y = f(x). This class returns a function whose call method uses interpolation to find the value of new points. - Parameters : - x : (N,) array_like - A 1-D array of monotonically increasing real values. - y : (...,N,...) array_like - A N-D array of real values. The length of y along the interpolation axis must be equal to the length of x. - kind : str or int, optional - Specifies the kind of interpolation as a string (‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic, ‘cubic’ where ‘slinear’, ‘quadratic’ and ‘cubic’ refer to a spline interpolation of first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is ‘linear’. - axis : int, optional - Specifies the axis of y along which to interpolate. Interpolation defaults to the last axis of y. - copy : bool, optional - If True, the class makes internal copies of x and y. If False, references to x and y are used. The default is to copy. - bounds_error : bool, optional - If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned fill_value. By default, an error is raised. - fill_value : float, optional - If provided, then this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. - Examples - >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) - >>> xnew = np.arange(0,9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() - Methods - __call__(x) - Evaluate the interpolant 
