Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation.
The Spearman correlation is a nonparametric measure of the monotonicity of the relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so.
Parameters : | a, b : 1D or 2D array_like, b is optional
axis : int or None, optional
|
---|---|
Returns : | rho : float or ndarray (2-D square)
p-value : float
|
Notes
Changes in scipy 0.8.0: rewrite to add tie-handling, and axis.
References
[CRCProbStat2000] Section 14.7
[CRCProbStat2000] | (1, 2) Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. |
Examples
>>> spearmanr([1,2,3,4,5],[5,6,7,8,7])
(0.82078268166812329, 0.088587005313543798)
>>> np.random.seed(1234321)
>>> x2n=np.random.randn(100,2)
>>> y2n=np.random.randn(100,2)
>>> spearmanr(x2n)
(0.059969996999699973, 0.55338590803773591)
>>> spearmanr(x2n[:,0], x2n[:,1])
(0.059969996999699973, 0.55338590803773591)
>>> rho, pval = spearmanr(x2n,y2n)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],
[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])
>>> pval
array([[ 0. , 0.55338591, 0.06435364, 0.53617935],
[ 0.55338591, 0. , 0.27592895, 0.80234077],
[ 0.06435364, 0.27592895, 0. , 0.73039992],
[ 0.53617935, 0.80234077, 0.73039992, 0. ]])
>>> rho, pval = spearmanr(x2n.T, y2n.T, axis=1)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],
[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])
>>> spearmanr(x2n, y2n, axis=None)
(0.10816770419260482, 0.1273562188027364)
>>> spearmanr(x2n.ravel(), y2n.ravel())
(0.10816770419260482, 0.1273562188027364)
>>> xint = np.random.randint(10,size=(100,2))
>>> spearmanr(xint)
(0.052760927029710199, 0.60213045837062351)