A Poisson discrete random variable.
Discrete random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
| Parameters : | x : array_like 
 q : array_like 
 mu : array_like 
 loc : array_like, optional 
 scale : array_like, optional 
 size : int or tuple of ints, optional 
 moments : str, optional 
 Alternatively, the object may be called (as a function) to fix the shape and : location parameters returning a “frozen” discrete RV object: : rv = poisson(mu, loc=0) : 
 | 
|---|
Notes
The probability mass function for poisson is:
poisson.pmf(k) = exp(-mu) * mu**k / k!
for k >= 0.
poisson takes mu as shape parameter.
Examples
>>> from scipy.stats import poisson
>>> [ mu ] = [<Replace with reasonable values>]
>>> rv = poisson(mu)
Display frozen pmf
>>> x = np.arange(0, np.minimum(rv.dist.b, 3))
>>> h = plt.vlines(x, 0, rv.pmf(x), lw=2)
Here, rv.dist.b is the right endpoint of the support of rv.dist.
Check accuracy of cdf and ppf
>>> prb = poisson.cdf(x, mu)
>>> h = plt.semilogy(np.abs(x - poisson.ppf(prb, mu)) + 1e-20)
Random number generation
>>> R = poisson.rvs(mu, size=100)
Methods
| rvs(mu, loc=0, size=1) | Random variates. | 
| pmf(x, mu, loc=0) | Probability mass function. | 
| logpmf(x, mu, loc=0) | Log of the probability mass function. | 
| cdf(x, mu, loc=0) | Cumulative density function. | 
| logcdf(x, mu, loc=0) | Log of the cumulative density function. | 
| sf(x, mu, loc=0) | Survival function (1-cdf — sometimes more accurate). | 
| logsf(x, mu, loc=0) | Log of the survival function. | 
| ppf(q, mu, loc=0) | Percent point function (inverse of cdf — percentiles). | 
| isf(q, mu, loc=0) | Inverse survival function (inverse of sf). | 
| stats(mu, loc=0, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). | 
| entropy(mu, loc=0) | (Differential) entropy of the RV. | 
| expect(func, mu, loc=0, lb=None, ub=None, conditional=False) | Expected value of a function (of one argument) with respect to the distribution. | 
| median(mu, loc=0) | Median of the distribution. | 
| mean(mu, loc=0) | Mean of the distribution. | 
| var(mu, loc=0) | Variance of the distribution. | 
| std(mu, loc=0) | Standard deviation of the distribution. | 
| interval(alpha, mu, loc=0) | Endpoints of the range that contains alpha percent of the distribution |