Computes empirical quantiles for a data array.
Samples quantile are defined by Q(p) = (1-gamma)*x[j] + gamma*x[j+1], where x[j] is the j-th order statistic, and gamma is a function of j = floor(n*p + m), m = alphap + p*(1 - alphap - betap) and g = n*p + m - j.
Reinterpreting the above equations to compare to R lead to the equation: p(k) = (k - alphap)/(n + 1 - alphap - betap)
Parameters : | a : array_like
prob : array_like, optional
alphap : float, optional
betap : float, optional
axis : int, optional
limit : tuple
|
---|---|
Returns : | mquantiles : MaskedArray
|
Notes
This formulation is very similar to R except the calculation of m from alphap and betap, where in R m is defined with each type.
References
[R190] | R statistical software at http://www.r-project.org/ |
Examples
>>> from scipy.stats.mstats import mquantiles
>>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
>>> mquantiles(a)
array([ 19.2, 40. , 42.8])
Using a 2D array, specifying axis and limit.
>>> data = np.array([[ 6., 7., 1.],
[ 47., 15., 2.],
[ 49., 36., 3.],
[ 15., 39., 4.],
[ 42., 40., -999.],
[ 41., 41., -999.],
[ 7., -999., -999.],
[ 39., -999., -999.],
[ 43., -999., -999.],
[ 40., -999., -999.],
[ 36., -999., -999.]])
>>> mquantiles(data, axis=0, limit=(0, 50))
array([[ 19.2 , 14.6 , 1.45],
[ 40. , 37.5 , 2.5 ],
[ 42.8 , 40.05, 3.55]])
>>> data[:, 2] = -999.
>>> mquantiles(data, axis=0, limit=(0, 50))
masked_array(data =
[[19.2 14.6 --]
[40.0 37.5 --]
[42.8 40.05 --]],
mask =
[[False False True]
[False False True]
[False False True]],
fill_value = 1e+20)