An inverted gamma continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
| Parameters : | x : array_like 
 q : array_like 
 a : array_like 
 loc : array_like, optional 
 scale : array_like, optional 
 size : int or tuple of ints, optional 
 moments : str, optional 
 Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = invgamma(a, loc=0, scale=1) : 
 | 
|---|
Notes
The probability density function for invgamma is:
invgamma.pdf(x, a) = x**(-a-1) / gamma(a) * exp(-1/x)
for x > 0, a > 0.
Examples
>>> from scipy.stats import invgamma
>>> numargs = invgamma.numargs
>>> [ a ] = [0.9,] * numargs
>>> rv = invgamma(a)
Display frozen pdf
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
Here, rv.dist.b is the right endpoint of the support of rv.dist.
Check accuracy of cdf and ppf
>>> prb = invgamma.cdf(x, a)
>>> h = plt.semilogy(np.abs(x - invgamma.ppf(prb, a)) + 1e-20)
Random number generation
>>> R = invgamma.rvs(a, size=100)
Methods
| rvs(a, loc=0, scale=1, size=1) | Random variates. | 
| pdf(x, a, loc=0, scale=1) | Probability density function. | 
| logpdf(x, a, loc=0, scale=1) | Log of the probability density function. | 
| cdf(x, a, loc=0, scale=1) | Cumulative density function. | 
| logcdf(x, a, loc=0, scale=1) | Log of the cumulative density function. | 
| sf(x, a, loc=0, scale=1) | Survival function (1-cdf — sometimes more accurate). | 
| logsf(x, a, loc=0, scale=1) | Log of the survival function. | 
| ppf(q, a, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). | 
| isf(q, a, loc=0, scale=1) | Inverse survival function (inverse of sf). | 
| moment(n, a, loc=0, scale=1) | Non-central moment of order n | 
| stats(a, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). | 
| entropy(a, loc=0, scale=1) | (Differential) entropy of the RV. | 
| fit(data, a, loc=0, scale=1) | Parameter estimates for generic data. | 
| expect(func, a, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. | 
| median(a, loc=0, scale=1) | Median of the distribution. | 
| mean(a, loc=0, scale=1) | Mean of the distribution. | 
| var(a, loc=0, scale=1) | Variance of the distribution. | 
| std(a, loc=0, scale=1) | Standard deviation of the distribution. | 
| interval(alpha, a, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |