A Boltzmann (Truncated Discrete Exponential) random variable.
Discrete random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters : | x : array_like
q : array_like
lamda, N : array_like
loc : array_like, optional
scale : array_like, optional
size : int or tuple of ints, optional
moments : str, optional
Alternatively, the object may be called (as a function) to fix the shape and : location parameters returning a “frozen” discrete RV object: : rv = boltzmann(lamda, N, loc=0) :
|
---|
Notes
The probability mass function for boltzmann is:
boltzmann.pmf(k) = (1-exp(-lambda)*exp(-lambda*k)/(1-exp(-lambda*N))
for k = 0,...,N-1.
boltzmann takes lambda and N as shape parameters.
Examples
>>> from scipy.stats import boltzmann
>>> [ lamda, N ] = [<Replace with reasonable values>]
>>> rv = boltzmann(lamda, N)
Display frozen pmf
>>> x = np.arange(0, np.minimum(rv.dist.b, 3))
>>> h = plt.vlines(x, 0, rv.pmf(x), lw=2)
Here, rv.dist.b is the right endpoint of the support of rv.dist.
Check accuracy of cdf and ppf
>>> prb = boltzmann.cdf(x, lamda, N)
>>> h = plt.semilogy(np.abs(x - boltzmann.ppf(prb, lamda, N)) + 1e-20)
Random number generation
>>> R = boltzmann.rvs(lamda, N, size=100)
Methods
rvs(lamda, N, loc=0, size=1) | Random variates. |
pmf(x, lamda, N, loc=0) | Probability mass function. |
logpmf(x, lamda, N, loc=0) | Log of the probability mass function. |
cdf(x, lamda, N, loc=0) | Cumulative density function. |
logcdf(x, lamda, N, loc=0) | Log of the cumulative density function. |
sf(x, lamda, N, loc=0) | Survival function (1-cdf — sometimes more accurate). |
logsf(x, lamda, N, loc=0) | Log of the survival function. |
ppf(q, lamda, N, loc=0) | Percent point function (inverse of cdf — percentiles). |
isf(q, lamda, N, loc=0) | Inverse survival function (inverse of sf). |
stats(lamda, N, loc=0, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(lamda, N, loc=0) | (Differential) entropy of the RV. |
expect(func, lamda, N, loc=0, lb=None, ub=None, conditional=False) | Expected value of a function (of one argument) with respect to the distribution. |
median(lamda, N, loc=0) | Median of the distribution. |
mean(lamda, N, loc=0) | Mean of the distribution. |
var(lamda, N, loc=0) | Variance of the distribution. |
std(lamda, N, loc=0) | Standard deviation of the distribution. |
interval(alpha, lamda, N, loc=0) | Endpoints of the range that contains alpha percent of the distribution |