This is documentation for an old release of SciPy (version 0.12.0). Read this page in the documentation of the latest stable release (version 1.15.1).
Use Generalized Minimal RESidual iteration to solve A x = b.
Parameters : | A : {sparse matrix, dense matrix, LinearOperator}
b : {array, matrix}
|
---|---|
Returns : | x : {array, matrix}
info : int
|
Other Parameters: | |
x0 : {array, matrix}
tol : float
restart : int, optional
maxiter : int, optional
xtype : {‘f’,’d’,’F’,’D’}
M : {sparse matrix, dense matrix, LinearOperator}
callback : function
restrt : int, optional
|
See also
Notes
A preconditioner, P, is chosen such that P is close to A but easy to solve for. The preconditioner parameter required by this routine is M = P^-1. The inverse should preferably not be calculated explicitly. Rather, use the following template to produce M:
# Construct a linear operator that computes P^-1 * x.
import scipy.sparse.linalg as spla
M_x = lambda x: spla.spsolve(P, x)
M = spla.LinearOperator((n, n), M_x)