This is documentation for an old release of SciPy (version 0.12.0). Read this page in the documentation of the latest stable release (version 1.15.1).
Compressed Sparse Column matrix
This can be instantiated in several ways:
- csc_matrix(D)
- with a dense matrix or rank-2 ndarray D
- csc_matrix(S)
- with another sparse matrix S (equivalent to S.tocsc())
- csc_matrix((M, N), [dtype])
- to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.
- csc_matrix((data, ij), [shape=(M, N)])
- where data and ij satisfy the relationship a[ij[0, k], ij[1, k]] = data[k]
- csc_matrix((data, indices, indptr), [shape=(M, N)])
- is the standard CSC representation where the row indices for column i are stored in indices[indptr[i]:indptr[i+1]] and their corresponding values are stored in data[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Examples
>>> from scipy.sparse import *
>>> from scipy import *
>>> csc_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = array([0,2,2,0,1,2])
>>> col = array([0,0,1,2,2,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 4],
[0, 0, 5],
[2, 3, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csc_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 4],
[0, 0, 5],
[2, 3, 6]])
Attributes
has_sorted_indices | Determine whether the matrix has sorted indices |
dtype | (dtype) Data type of the matrix |
shape | (2-tuple) Shape of the matrix |
ndim | (int) Number of dimensions (this is always 2) |
nnz | Number of nonzero elements |
data | Data array of the matrix |
indices | CSC format index array |
indptr | CSC format index pointer array |
Methods
arcsin() | Element-wise arcsin. |
arcsinh() | Element-wise arcsinh. |
arctan() | Element-wise arctan. |
arctanh() | Element-wise arctanh. |
asformat(format) | Return this matrix in a given sparse format |
asfptype() | Upcast matrix to a floating point format (if necessary) |
astype(t) | |
ceil() | Element-wise ceil. |
check_format([full_check]) | check whether the matrix format is valid |
conj() | |
conjugate() | |
copy() | |
deg2rad() | Element-wise deg2rad. |
diagonal() | Returns the main diagonal of the matrix |
dot(other) | |
eliminate_zeros() | Remove zero entries from the matrix |
expm1() | Element-wise expm1. |
floor() | Element-wise floor. |
getH() | |
get_shape() | |
getcol(i) | Returns a copy of column i of the matrix, as a (m x 1) |
getformat() | |
getmaxprint() | |
getnnz() | |
getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) |
log1p() | Element-wise log1p. |
mean([axis]) | Average the matrix over the given axis. |
multiply(other) | Point-wise multiplication by another matrix |
nonzero() | nonzero indices |
prune() | Remove empty space after all non-zero elements. |
rad2deg() | Element-wise rad2deg. |
reshape(shape) | |
rint() | Element-wise rint. |
set_shape(shape) | |
setdiag(values[, k]) | Fills the diagonal elements {a_ii} with the values from the given sequence. |
sign() | Element-wise sign. |
sin() | Element-wise sin. |
sinh() | Element-wise sinh. |
sort_indices() | Sort the indices of this matrix in place |
sorted_indices() | Return a copy of this matrix with sorted indices |
sum([axis]) | Sum the matrix over the given axis. |
sum_duplicates() | Eliminate duplicate matrix entries by adding them together |
tan() | Element-wise tan. |
tanh() | Element-wise tanh. |
toarray([order, out]) | See the docstring for spmatrix.toarray. |
tobsr([blocksize]) | |
tocoo([copy]) | Return a COOrdinate representation of this matrix |
tocsc([copy]) | |
tocsr() | |
todense([order, out]) | Return a dense matrix representation of this matrix. |
todia() | |
todok() | |
tolil() | |
transpose([copy]) | |
trunc() | Element-wise trunc. |