A sparse matrix in COOrdinate format.
Also known as the ‘ijv’ or ‘triplet’ format.
Where A[i[k], j[k]] = data[k]. When shape is not specified, it is inferred from the index arrays
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Examples
>>> from scipy.sparse import coo_matrix
>>> coo_matrix((3,4), dtype=np.int8).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0,3,1,0])
>>> col = np.array([0,3,1,2])
>>> data = np.array([4,5,7,9])
>>> coo_matrix((data,(row,col)), shape=(4,4)).todense()
matrix([[4, 0, 9, 0],
[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])
>>> # example with duplicates
>>> row = np.array([0,0,1,3,1,0,0])
>>> col = np.array([0,2,1,3,1,0,0])
>>> data = np.array([1,1,1,1,1,1,1])
>>> coo_matrix((data, (row,col)), shape=(4,4)).todense()
matrix([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])
Attributes
| dtype | (dtype) Data type of the matrix |
| shape | (2-tuple) Shape of the matrix |
| ndim | (int) Number of dimensions (this is always 2) |
| nnz | Number of nonzero elements |
| data | COO format data array of the matrix |
| row | COO format row index array of the matrix |
| col | COO format column index array of the matrix |
Methods
| arcsin() | Element-wise arcsin. |
| arcsinh() | Element-wise arcsinh. |
| arctan() | Element-wise arctan. |
| arctanh() | Element-wise arctanh. |
| asformat(format) | Return this matrix in a given sparse format |
| asfptype() | Upcast matrix to a floating point format (if necessary) |
| astype(t) | |
| ceil() | Element-wise ceil. |
| conj() | |
| conjugate() | |
| copy() | |
| deg2rad() | Element-wise deg2rad. |
| diagonal() | Returns the main diagonal of the matrix |
| dot(other) | |
| expm1() | Element-wise expm1. |
| floor() | Element-wise floor. |
| getH() | |
| get_shape() | |
| getcol(j) | Returns a copy of column j of the matrix, as an (m x 1) sparse |
| getformat() | |
| getmaxprint() | |
| getnnz() | |
| getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) sparse |
| log1p() | Element-wise log1p. |
| mean([axis]) | Average the matrix over the given axis. |
| multiply(other) | Point-wise multiplication by another matrix |
| nonzero() | nonzero indices |
| rad2deg() | Element-wise rad2deg. |
| reshape(shape) | |
| rint() | Element-wise rint. |
| set_shape(shape) | |
| setdiag(values[, k]) | Fills the diagonal elements {a_ii} with the values from the given sequence. |
| sign() | Element-wise sign. |
| sin() | Element-wise sin. |
| sinh() | Element-wise sinh. |
| sum([axis]) | Sum the matrix over the given axis. |
| tan() | Element-wise tan. |
| tanh() | Element-wise tanh. |
| toarray([order, out]) | See the docstring for spmatrix.toarray. |
| tobsr([blocksize]) | |
| tocoo([copy]) | |
| tocsc() | Return a copy of this matrix in Compressed Sparse Column format |
| tocsr() | Return a copy of this matrix in Compressed Sparse Row format |
| todense([order, out]) | Return a dense matrix representation of this matrix. |
| todia() | |
| todok() | |
| tolil() | |
| transpose([copy]) | |
| trunc() | Element-wise trunc. |