Block Sparse Row matrix
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Summary of BSR format
The Block Compressed Row (BSR) format is very similar to the Compressed Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense sub matrices like the last example below. Block matrices often arise in vector-valued finite element discretizations. In such cases, BSR is considerably more efficient than CSR and CSC for many sparse arithmetic operations.
Blocksize
The blocksize (R,C) must evenly divide the shape of the matrix (M,N). That is, R and C must satisfy the relationship M % R = 0 and N % C = 0.
If no blocksize is specified, a simple heuristic is applied to determine an appropriate blocksize.
Examples
>>> from scipy.sparse import bsr_matrix
>>> bsr_matrix((3,4), dtype=np.int8).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0,0,1,2,2,2])
>>> col = np.array([0,2,2,0,1,2])
>>> data = np.array([1,2,3,4,5,6])
>>> bsr_matrix((data, (row,col)), shape=(3,3)).todense()
matrix([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = np.array([0,2,3,6])
>>> indices = np.array([0,2,2,0,1,2])
>>> data = np.array([1,2,3,4,5,6]).repeat(4).reshape(6,2,2)
>>> bsr_matrix((data,indices,indptr), shape=(6,6)).todense()
matrix([[1, 1, 0, 0, 2, 2],
[1, 1, 0, 0, 2, 2],
[0, 0, 0, 0, 3, 3],
[0, 0, 0, 0, 3, 3],
[4, 4, 5, 5, 6, 6],
[4, 4, 5, 5, 6, 6]])
Attributes
has_sorted_indices | Determine whether the matrix has sorted indices |
dtype | (dtype) Data type of the matrix |
shape | (2-tuple) Shape of the matrix |
ndim | (int) Number of dimensions (this is always 2) |
nnz | Number of nonzero elements |
data | Data array of the matrix |
indices | BSR format index array |
indptr | BSR format index pointer array |
blocksize | Block size of the matrix |
Methods
arcsin() | Element-wise arcsin. |
arcsinh() | Element-wise arcsinh. |
arctan() | Element-wise arctan. |
arctanh() | Element-wise arctanh. |
asformat(format) | Return this matrix in a given sparse format |
asfptype() | Upcast matrix to a floating point format (if necessary) |
astype(t) | |
ceil() | Element-wise ceil. |
check_format([full_check]) | check whether the matrix format is valid |
conj() | |
conjugate() | |
copy() | |
deg2rad() | Element-wise deg2rad. |
diagonal() | Returns the main diagonal of the matrix |
dot(other) | |
eliminate_zeros() | |
expm1() | Element-wise expm1. |
floor() | Element-wise floor. |
getH() | |
get_shape() | |
getcol(j) | Returns a copy of column j of the matrix, as an (m x 1) sparse |
getdata(ind) | |
getformat() | |
getmaxprint() | |
getnnz() | |
getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) sparse |
log1p() | Element-wise log1p. |
matmat(other) | |
matvec(other) | |
mean([axis]) | Average the matrix over the given axis. |
multiply(other) | Point-wise multiplication by another matrix |
nonzero() | nonzero indices |
prune() | Remove empty space after all non-zero elements. |
rad2deg() | Element-wise rad2deg. |
reshape(shape) | |
rint() | Element-wise rint. |
set_shape(shape) | |
setdiag(values[, k]) | Fills the diagonal elements {a_ii} with the values from the given sequence. |
sign() | Element-wise sign. |
sin() | Element-wise sin. |
sinh() | Element-wise sinh. |
sort_indices() | Sort the indices of this matrix in place |
sorted_indices() | Return a copy of this matrix with sorted indices |
sum([axis]) | Sum the matrix over the given axis. |
sum_duplicates() | |
tan() | Element-wise tan. |
tanh() | Element-wise tanh. |
toarray([order, out]) | See the docstring for spmatrix.toarray. |
tobsr([blocksize, copy]) | |
tocoo([copy]) | Convert this matrix to COOrdinate format. |
tocsc() | |
tocsr() | |
todense([order, out]) | Return a dense matrix representation of this matrix. |
todia() | |
todok() | |
tolil() | |
transpose() | |
trunc() | Element-wise trunc. |