Continuous wavelet transform.
Performs a continuous wavelet transform on data, using the wavelet function. A CWT performs a convolution with data using the wavelet function, which is characterized by a width parameter and length parameter.
Parameters : | data : (N,) ndarray
wavelet : function
widths : (M,) sequence
|
---|---|
Returns : | cwt: (M, N) ndarray :
|
Notes
>>> length = min(10 * width[ii], len(data))
>>> cwt[ii,:] = scipy.signal.convolve(data, wavelet(width[ii],
... length), mode='same')
Examples
>>> from scipy import signal
>>> sig = np.random.rand(20) - 0.5
>>> wavelet = signal.ricker
>>> widths = np.arange(1, 11)
>>> cwtmatr = signal.cwt(sig, wavelet, widths)