Compute Schur decomposition of a matrix.
The Schur decomposition is:
A = Z T Z^H
where Z is unitary and T is either upper-triangular, or for real Schur decomposition (output=’real’), quasi-upper triangular. In the quasi-triangular form, 2x2 blocks describing complex-valued eigenvalue pairs may extrude from the diagonal.
Parameters : | a : (M, M) array_like
output : {‘real’, ‘complex’}, optional
lwork : int, optional
overwrite_a : bool, optional
sort : {None, callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional
check_finite : boolean, optional
|
---|---|
Returns : | T : (M, M) ndarray
Z : (M, M) ndarray
sdim : int
|
Raises : | LinAlgError :
|
See also