a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues and
eigenvectors will be computed.
b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in.
If omitted, identity matrix is assumed.
lower : bool, optional
Whether the pertinent array data is taken from the lower or upper
triangle of a. (Default: lower)
turbo : bool, optional
Use divide and conquer algorithm (faster but expensive in memory,
only for generalized eigenvalue problem and if eigvals=None)
eigvals : tuple (lo, hi), optional
Indexes of the smallest and largest (in ascending order) eigenvalues
and corresponding eigenvectors to be returned: 0 <= lo < hi <= M-1.
If omitted, all eigenvalues and eigenvectors are returned.
type : integer, optional
Specifies the problem type to be solved:
type = 1: a v[:,i] = w[i] b v[:,i]
type = 2: a b v[:,i] = w[i] v[:,i]
type = 3: b a v[:,i] = w[i] v[:,i]
overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)
overwrite_b : bool, optional
Whether to overwrite data in b (may improve performance)
check_finite : boolean, optional
Whether to check the input matrixes contain only finite numbers.
Disabling may give a performance gain, but may result to problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|