Compute the determinant of a matrix
The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix.
The determinant for a 3x3 matrix, for example, is computed as follows:
a b c
d e f = A
g h i
det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h
Parameters : | a : (M, M) array_like
overwrite_a : bool
check_finite : boolean, optional
|
---|---|
Returns : | det : float or complex
|
Notes
The determinant is computed via LU factorization, LAPACK routine z/dgetrf.
Examples
>>> a = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> linalg.det(a)
0.0
>>> a = np.array([[0,2,3],[4,5,6],[7,8,9]])
>>> linalg.det(a)
3.0