Weighted least-squares bivariate spline approximation.
Parameters : | x, y, z : array_like
tx, ty : array_like
w : array_like, optional
bbox : (4,) array_like, optional
kx, ky : ints, optional
s : float, optional
eps : float, optional
|
---|
See also
Notes
The length of x, y and z should be at least (kx+1) * (ky+1).
Methods
__call__(x, y[, mth]) | Evaluate spline at the grid points defined by the coordinate arrays |
ev(xi, yi) | Evaluate spline at points (x[i], y[i]), i=0,...,len(x)-1 |
get_coeffs() | Return spline coefficients. |
get_knots() | Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. |
get_residual() | Return weighted sum of squared residuals of the spline |
integral(xa, xb, ya, yb) | Evaluate the integral of the spline over area [xa,xb] x [ya,yb]. |