Integrate a system of ordinary differential equations.
Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack.
Solves the initial value problem for stiff or non-stiff systems of first order ode-s:
dy/dt = func(y,t0,...)
where y can be a vector.
Parameters : | func : callable(y, t0, ...)
y0 : array
t : array
args : tuple, optional
Dfun : callable(y, t0, ...)
col_deriv : bool, optional
full_output : bool, optional
printmessg : bool, optional
|
||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Returns : | y : array, shape (len(t), len(y0))
infodict : dict, only returned if full_output == True
|
||||||||||||||||||||||||||
Other Parameters: | |||||||||||||||||||||||||||
ml, mu : int, optional
rtol, atol : float, optional
tcrit : ndarray, optional
h0 : float, (0: solver-determined), optional
hmax : float, (0: solver-determined), optional
hmin : float, (0: solver-determined), optional
ixpr : bool, optional
mxstep : int, (0: solver-determined), optional
mxhnil : int, (0: solver-determined), optional
mxordn : int, (0: solver-determined), optional
mxords : int, (0: solver-determined), optional
|