Return discrete Fourier transform of real or complex sequence.
The returned complex array contains y(0), y(1),..., y(n-1) where
y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum().
Parameters : | x : array_like
n : int, optional
axis : int, optional
overwrite_x : bool, optional
|
---|---|
Returns : | z : complex ndarray
|
Notes
The packing of the result is “standard”: If A = fft(a, n), then A[0] contains the zero-frequency term, A[1:n/2+1] contains the positive-frequency terms, and A[n/2+1:] contains the negative-frequency terms, in order of decreasingly negative frequency. So for an 8-point transform, the frequencies of the result are [ 0, 1, 2, 3, 4, -3, -2, -1].
For n even, A[n/2] contains the sum of the positive and negative-frequency terms. For n even and x real, A[n/2] will always be real.
This is most efficient for n a power of two.
Examples
>>> from scipy.fftpack import fft, ifft
>>> x = np.arange(5)
>>> np.allclose(fft(ifft(x)), x, atol=1e-15) #within numerical accuracy.
True