A non-central chi-squared continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters : | x : array_like
q : array_like
df, nc : array_like
loc : array_like, optional
scale : array_like, optional
size : int or tuple of ints, optional
moments : str, optional
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = ncx2(df, nc, loc=0, scale=1) :
|
---|
Notes
The probability density function for ncx2 is:
ncx2.pdf(x, df, nc) = exp(-(nc+df)/2) * 1/2 * (x/nc)**((df-2)/4)
* I[(df-2)/2](sqrt(nc*x))
for x > 0.
Examples
>>> from scipy.stats import ncx2
>>> numargs = ncx2.numargs
>>> [ df, nc ] = [0.9,] * numargs
>>> rv = ncx2(df, nc)
Display frozen pdf
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
Here, rv.dist.b is the right endpoint of the support of rv.dist.
Check accuracy of cdf and ppf
>>> prb = ncx2.cdf(x, df, nc)
>>> h = plt.semilogy(np.abs(x - ncx2.ppf(prb, df, nc)) + 1e-20)
Random number generation
>>> R = ncx2.rvs(df, nc, size=100)
Methods
rvs(df, nc, loc=0, scale=1, size=1) | Random variates. |
pdf(x, df, nc, loc=0, scale=1) | Probability density function. |
logpdf(x, df, nc, loc=0, scale=1) | Log of the probability density function. |
cdf(x, df, nc, loc=0, scale=1) | Cumulative density function. |
logcdf(x, df, nc, loc=0, scale=1) | Log of the cumulative density function. |
sf(x, df, nc, loc=0, scale=1) | Survival function (1-cdf — sometimes more accurate). |
logsf(x, df, nc, loc=0, scale=1) | Log of the survival function. |
ppf(q, df, nc, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, df, nc, loc=0, scale=1) | Inverse survival function (inverse of sf). |
moment(n, df, nc, loc=0, scale=1) | Non-central moment of order n |
stats(df, nc, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(df, nc, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data, df, nc, loc=0, scale=1) | Parameter estimates for generic data. |
expect(func, df, nc, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) | Expected value of a function (of one argument) with respect to the distribution. |
median(df, nc, loc=0, scale=1) | Median of the distribution. |
mean(df, nc, loc=0, scale=1) | Mean of the distribution. |
var(df, nc, loc=0, scale=1) | Variance of the distribution. |
std(df, nc, loc=0, scale=1) | Standard deviation of the distribution. |
interval(alpha, df, nc, loc=0, scale=1) | Endpoints of the range that contains alpha percent of the distribution |