Calculates a one-way chi square test.
The chi square test tests the null hypothesis that the categorical data has the given frequencies.
Parameters : | f_obs : array
f_exp : array, optional
ddof : int, optional
|
---|---|
Returns : | chisquare statistic : float
p : float
|
Notes
This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distributions is not a chisquare, in which case this test is not appropriate.
References
[R141] | Lowry, Richard. “Concepts and Applications of Inferential Statistics”. Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html |