# scipy.sparse.linalg.cgs¶

scipy.sparse.linalg.cgs(A, b, x0=None, tol=1e-05, maxiter=None, xtype=None, M=None, callback=None)[source]

Use Conjugate Gradient Squared iteration to solve A x = b

Parameters : Returns : A : {sparse matrix, dense matrix, LinearOperator} The real-valued N-by-N matrix of the linear system b : {array, matrix} Right hand side of the linear system. Has shape (N,) or (N,1). x : {array, matrix} The converged solution. info : integer Provides convergence information: 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : illegal input or breakdown x0 : {array, matrix} Starting guess for the solution. tol : float Tolerance to achieve. The algorithm terminates when either the relative or the absolute residual is below tol. maxiter : integer Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved. M : {sparse matrix, dense matrix, LinearOperator} Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance. callback : function User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector. xtype : {‘f’,’d’,’F’,’D’} This parameter is deprecated – avoid using it. The type of the result. If None, then it will be determined from A.dtype.char and b. If A does not have a typecode method then it will compute A.matvec(x0) to get a typecode. To save the extra computation when A does not have a typecode attribute use xtype=0 for the same type as b or use xtype=’f’,’d’,’F’,or ‘D’. This parameter has been superceeded by LinearOperator.

#### Previous topic

scipy.sparse.linalg.cg

#### Next topic

scipy.sparse.linalg.gmres