Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse matrices incrementally.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.
Examples
>>> from scipy.sparse import *
>>> from scipy import *
>>> S = dok_matrix((5,5), dtype=float32)
>>> for i in range(5):
>>> for j in range(5):
>>> S[i,j] = i+j # Update element
Attributes
shape | |
ndim | int(x[, base]) -> integer |
nnz |
dtype | dtype | Data type of the matrix |
Methods
asformat(format) | Return this matrix in a given sparse format |
asfptype() | Upcast matrix to a floating point format (if necessary) |
astype(t) | |
clear(() -> None. Remove all items from D.) | |
conj() | |
conjtransp() | Return the conjugate transpose |
conjugate() | |
copy() | |
diagonal() | Returns the main diagonal of the matrix |
dot(other) | |
fromkeys(...) | v defaults to None. |
get(key[, default]) | This overrides the dict.get method, providing type checking |
getH() | |
get_shape() | |
getcol(j) | Returns a copy of column j of the matrix, as an (m x 1) sparse |
getformat() | |
getmaxprint() | |
getnnz() | |
getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) sparse |
has_key((k) -> True if D has a key k, else False) | |
items(() -> list of D’s (key, value) pairs, ...) | |
iteritems(() -> an iterator over the (key, ...) | |
iterkeys(() -> an iterator over the keys of D) | |
itervalues(...) | |
keys(() -> list of D’s keys) | |
mean([axis]) | Average the matrix over the given axis. |
multiply(other) | Point-wise multiplication by another matrix |
nonzero() | nonzero indices |
pop((k[,d]) -> v, ...) | If key is not found, d is returned if given, otherwise KeyError is raised |
popitem(() -> (k, v), ...) | 2-tuple; but raise KeyError if D is empty. |
reshape(shape) | |
resize(shape) | Resize the matrix in-place to dimensions given by ‘shape’. |
set_shape(shape) | |
setdefault((k[,d]) -> D.get(k,d), ...) | |
setdiag(values[, k]) | Fills the diagonal elements {a_ii} with the values from the given sequence. |
split(cols_or_rows[, columns]) | |
sum([axis]) | Sum the matrix over the given axis. |
take(cols_or_rows[, columns]) | |
toarray([order, out]) | See the docstring for spmatrix.toarray. |
tobsr([blocksize]) | |
tocoo() | Return a copy of this matrix in COOrdinate format |
tocsc() | Return a copy of this matrix in Compressed Sparse Column format |
tocsr() | Return a copy of this matrix in Compressed Sparse Row format |
todense([order, out]) | Return a dense matrix representation of this matrix. |
todia() | |
todok([copy]) | |
tolil() | |
transpose() | Return the transpose |
update(([E, ...) | If E present and has a .keys() method, does: for k in E: D[k] = E[k] |
values(() -> list of D’s values) | |
viewitems(...) | |
viewkeys(...) | |
viewvalues(...) |