This is documentation for an old release of SciPy (version 0.11.0). Read this page in the documentation of the latest stable release (version 1.15.1).
Compressed Sparse Row matrix
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Examples
>>> from scipy.sparse import *
>>> from scipy import *
>>> csr_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = array([0,0,1,2,2,2])
>>> col = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,(row,col)), shape=(3,3) ).todense()
matrix([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
>>> indptr = array([0,2,3,6])
>>> indices = array([0,2,2,0,1,2])
>>> data = array([1,2,3,4,5,6])
>>> csr_matrix( (data,indices,indptr), shape=(3,3) ).todense()
matrix([[1, 0, 2],
[0, 0, 3],
[4, 5, 6]])
Attributes
dtype | |
shape | |
ndim | int(x[, base]) -> integer |
nnz | |
has_sorted_indices | Determine whether the matrix has sorted indices |
data | CSR format data array of the matrix |
indices | CSR format index array of the matrix |
indptr | CSR format index pointer array of the matrix |
Methods
arcsin() | Element-wise arcsin. |
arcsinh() | Element-wise arcsinh. |
arctan() | Element-wise arctan. |
arctanh() | Element-wise arctanh. |
asformat(format) | Return this matrix in a given sparse format |
asfptype() | Upcast matrix to a floating point format (if necessary) |
astype(t) | |
ceil() | Element-wise ceil. |
check_format([full_check]) | check whether the matrix format is valid |
conj() | |
conjugate() | |
copy() | |
deg2rad() | Element-wise deg2rad. |
diagonal() | Returns the main diagonal of the matrix |
dot(other) | |
eliminate_zeros() | Remove zero entries from the matrix |
expm1() | Element-wise expm1. |
floor() | Element-wise floor. |
getH() | |
get_shape() | |
getcol(j) | Returns a copy of column j of the matrix, as an (m x 1) sparse |
getformat() | |
getmaxprint() | |
getnnz() | |
getrow(i) | Returns a copy of row i of the matrix, as a (1 x n) sparse |
log1p() | Element-wise log1p. |
mean([axis]) | Average the matrix over the given axis. |
multiply(other) | Point-wise multiplication by another matrix |
nonzero() | nonzero indices |
prune() | Remove empty space after all non-zero elements. |
rad2deg() | Element-wise rad2deg. |
reshape(shape) | |
rint() | Element-wise rint. |
set_shape(shape) | |
setdiag(values[, k]) | Fills the diagonal elements {a_ii} with the values from the given sequence. |
sign() | Element-wise sign. |
sin() | Element-wise sin. |
sinh() | Element-wise sinh. |
sort_indices() | Sort the indices of this matrix in place |
sorted_indices() | Return a copy of this matrix with sorted indices |
sum([axis]) | Sum the matrix over the given axis. |
sum_duplicates() | Eliminate duplicate matrix entries by adding them together |
tan() | Element-wise tan. |
tanh() | Element-wise tanh. |
toarray([order, out]) | See the docstring for spmatrix.toarray. |
tobsr([blocksize, copy]) | |
tocoo([copy]) | Return a COOrdinate representation of this matrix |
tocsc() | |
tocsr([copy]) | |
todense([order, out]) | Return a dense matrix representation of this matrix. |
todia() | |
todok() | |
tolil() | |
transpose([copy]) | |
trunc() | Element-wise trunc. |