Performs a continuous wavelet transform on data, using the wavelet function. A CWT performs a convolution with data using the wavelet function, which is characterized by a width parameter and length parameter.
Parameters : | data : 1-D ndarray
wavelet : function
widths : sequence
|
---|---|
Returns : | cwt: 2-D ndarray :
|
Notes
cwt[ii,:] = scipy.signal.convolve(data,wavelet(width[ii], length), mode=’same’) where length = min(10 * width[ii], len(data)).
Examples
>>> signal = np.random.rand(20) - 0.5
>>> wavelet = ricker
>>> widths = np.arange(1, 11)
>>> cwtmatr = cwt(signal, wavelet, widths)