Multi-dimensional binary opening with the given structuring element.
The opening of an input image by a structuring element is the dilation of the erosion of the image by the structuring element.
Parameters : | input : array_like
structure : array_like, optional
iterations : {int, float}, optional
output : ndarray, optional
origin : int or tuple of ints, optional
|
---|---|
Returns : | out : ndarray of bools
|
Notes
Opening [R52] is a mathematical morphology operation [R53] that consists in the succession of an erosion and a dilation of the input with the same structuring element. Opening therefore removes objects smaller than the structuring element.
Together with closing (binary_closing), opening can be used for noise removal.
References
[R52] | (1, 2) http://en.wikipedia.org/wiki/Opening_%28morphology%29 |
[R53] | (1, 2) http://en.wikipedia.org/wiki/Mathematical_morphology |
Examples
>>> a = np.zeros((5,5), dtype=np.int)
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
>>> a
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 1]])
>>> # Opening removes small objects
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(np.int)
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])
>>> # Opening can also smooth corners
>>> ndimage.binary_opening(a).astype(np.int)
array([[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]])
>>> # Opening is the dilation of the erosion of the input
>>> ndimage.binary_erosion(a).astype(np.int)
array([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(np.int)
array([[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]])