This is documentation for an old release of SciPy (version 0.11.0). Read this page in the documentation of the latest stable release (version 1.15.1).
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
Calculate a generalized inverse of a matrix using its singular-value decomposition and including all ‘large’ singular values.
Parameters : | a : array, shape (M, N)
cond, rcond : float or None
|
---|---|
Returns : | B : array, shape (N, M)
|
Raises : | LinAlgError :
|
Examples
>>> a = np.random.randn(9, 6)
>>> B = linalg.pinv2(a)
>>> np.allclose(a, dot(a, dot(B, a)))
True
>>> np.allclose(B, dot(B, dot(a, B)))
True