This is documentation for an old release of SciPy (version 0.11.0). Read this page in the documentation of the latest stable release (version 1.14.1).

scipy.interpolate.sproot

scipy.interpolate.sproot(tck, mest=10)[source]

Find the roots of a cubic B-spline.

Given the knots (>=8) and coefficients of a cubic B-spline return the roots of the spline.

Parameters :

tck : tuple

A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline. The number of knots must be >= 8. The knots must be a montonically increasing sequence.

mest : int

An estimate of the number of zeros (Default is 10).

Returns :

zeros : ndarray

An array giving the roots of the spline.

References

[R37]C. de Boor, “On calculating with b-splines”, J. Approximation Theory, 6, p.50-62, 1972.
[R38]M.G. Cox, “The numerical evaluation of b-splines”, J. Inst. Maths Applics, 10, p.134-149, 1972.
[R39]P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University Press, 1993.

Previous topic

scipy.interpolate.splint

Next topic

scipy.interpolate.spalde